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Abstract

It is shown that inhomogeneous rods of uniform cross-section with the same material density variation and the same
length, but with different boundary conditions and different elastic modulus variations along the axes of the rods have
coincident fundamental natural frequency. The rods have different mode shapes that stem from the static displacements
of the associated uniform rods, under uniformly distributed loads. These interesting properties appear in combination
with other unanticipated results; namely, the natural frequency expression for any polynomial variation of the material
density can be expressed in a unified manner, and depends solely on two coefficients: one coefficient describing material
density and the other associated with elastic modulus variation. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Free longitudinal vibration of uniform, homogeneous rods is covered nearly in all vibration texts. The
reader may consult with books by Weaver et al. (1990) and Rao (1995). Vibration frequencies of tapered
rods were studied by Conway et al. (1964). Graf (1975) pointed out that for bars of conical cross-sections,
the equation of motion could be put in the form of the wave equation by an appropriate change of variable.
This idea was further developed by Abrate (1995) and Horgan and Chan (1999). Graf (1975) considered
rods with various profiles, namely those designated as follows:

A(&) = 4o¢  (linear), (1)
A(&) = 4y&  (conical), (2)
A(E) = Ape*  (exponential), (3)
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and
A(&) = 4 coshz(ﬁé) (catenoidal), (4)

where Ay is the cross-sectional area at the origin of the coordinates, ¢ = x/L is the nondimensional axial
coordinate, L is the length of the rod, « and f are positive constants.

For the rod with the linear area variation, Eq. (1), Graf (1975) obtained an exact solution in terms of the
zeroth-order Bessel function, whereas for the conical rod, Eq. (2), the exact solution is obtainable via
application of the half-order Bessel functions. Series solutions for the nonuniform bars were constructed by
Eisenberger (1991a). In another paper of Eisenberger (1991b), “the exact solution is obtained using one
element for each segment with continuously varying properties, and the displacements and stresses are exact
all along this rod”.

The present paper deals with closed-form solutions for uniform cross-section nonhomogeneous rods.
Both the material density and the elastic modulus are treated as functions of the axial coordinate. Ap-
parently, for the first time, closed-form solutions are presented for the nonhomogeneous rod under two sets
of boundary conditions. Closed-form expressions for the natural frequency can serve as benchmark so-
lutions.

2. Formulation of the problem

The differential equation governing the free longitudinal vibration of rods reads

& | Eaw 5| = pac 55, )

where u(x,?) is an axial displacement, i.e. a function of the axial coordinate x and time #; E(x) is the
modulus of elasticity i.e. varying along the axis, p(x) and A(x) are material density and the cross-sectional
area, respectively, that are two functions of the axial coordinate x.

To find the natural frequency, we represent the displacement in the form

u(x,t) = U(x)e", (6)
where U(x) is the mode shape and w is the natural frequency. Substituting Eq. (6) into Eq. (5) leads to
% {E(x)A(x)aa—[)ﬂ + p(x)4(x)*U = 0. (7)
Consider rods whose ends are either clamped or free. At the clamped end, the boundary condition reads
U=0, (8)
whereas at the free end, the boundary condition is
dU/dx =0. 9)

For the uniform and homogeneous rod, 4(x) = constant and E(x) = constant and p(x) = constant. We
first find, as an auxiliary problem, the static displacements of such rods due to uniform axial loading. The
static displacement for the clamped-clamped uniform rod reads (from the left-hand side of Eq. (5)):

Ucc(é) =¢-&, (10)

where & is the nondimensional axial coordinate,

&E=x/L. (11)
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For the clamped—free uniform rod, the associated displacement is
Ucr(é) =¢-E)2. (12)

We pose the following question: Are there nonuniform and/or nonhomogeneous unloaded rods such
that expressions given in either Eq. (10) or Eq. (12) constitute the exact solution for the natural frequency?
This question may appear to be an artificial one in the first place. Indeed, why should static displacement of
the uniform and homogeneous rod serve as a mode shape of either a nonuniform or a nonhomogeneous
rod?

In posing this question, we are guided here by the previous experience, derived for the nonhomogeneous
columns and beams (Elishakoff and Rollot, 1999; Candan and Elishakoff, 2000), where indeed the above
phenomenon took place for four different sets of boundary conditions. We must immediately remark that if
there are rods whose mode shapes are given by Eq. (10) or Eq. (12), then these mode shapes correspond to
the fundamental frequencies since the mode shapes have no internal nodes.

3. Inhomogeneous rods with uniform density

Consider first a clamped—clamped rod that has a constant material density p(x) = a¢ > 0, and a constant
cross-sectional area 4 = constant. We ask the following question: What are the coefficients by, b, and b, in
the expression for the modulus of elasticity

E(&) = by + by + by &, (13)

so that the rod possesses a vibration mode given by Eq. (10)?
To this end, we substitute Eqgs. (10) and (13) into the differential equation (7). The result is

bl — 2170 + (—4b1 + 2b2 + a()k)é7 —(6b2 + aok)éz = O, (14)
where

k= oL, (15)
Since this expression must be valid for each &, we conclude that

by — 2by = 0, (16)

—4b, + 2b; + agk = 0, (17)

6b2 + aok =0. (18)

From Egs. (16)-(18), we have three equations for the four unknowns by, b, b, and k. Setting b, arbi-
trary, we solve for by, by and k in terms of b, and obtain

by = —by, (19)

by = —by)2, (20)

k = —6b,/ay. (21)
Thus, if the modulus of elasticity of the inhomogeneous rod reads

E(&) = —1/2by — byé + by &, (22)

then the natural frequency squared is given by
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wéfc = —6b2/L2(l() (23)

with the mode shape given in Eq. (10). Since «a is the density of the rod, it has to be positive. Therefore, in
order for the resulting expression for ? to be positive, b, must be negative. Note that £(¢) must be positive
throughout the interval [0,1]. It is easy to confirm that E(¢) in Eq. (22) is positive. Since b, is negative, we
have that the trinomial E(&)/|by| = 1/2 + & — & must be positive in [0,1]. It is positive when ¢ = 0, and has
the positive root (14 1/3)/2, which is greater than one. Thus, E(¢) is positive in [0,1].

Consider now the nonhomogeneous clamped—free rod of uniform density and modulus of elasticity given
in Eq. (13). The mode shape in these new circumstances is given in Eq. (12). We substitute Egs. (12) and (13)
into the governing differential equation (7). The result is a polynomial equation

(by — by) + (=2by + 2b; + kag) & — (3by — Ykag) & = 0. (24)

Hence, the expressions in the parentheses must vanish. The resulting equations can be put in the following
convenient form

by — by = 0, (25)
—2by + 2by + kay = 0, (26)
3b, + kag = 0. (27)

With b, as an arbitrary parameter, we solve for by, b; and k in terms of b, and obtain
by = —2b,, by = —2b,, k= —6b,/ay. (28)
We arrive at the following conclusion: if the modulus of elasticity is given by
E(&) = =2by = 2by¢ + by, (29)

then the mode shape is given in Eq. (12), and the natural frequency squared is given by the following closed-
form expression

wé—F = —6b2/L2a0. (30)

Here too, the value b, is negative; E(¢) in Eq. (29) is positive throughout the interval 0 < &< 1.

We also observe that the fundamental frequency expressions for the clamped—clamped (C—C) rod in Eq.
(23) and for the clamped—free (C-F) rod in Eq. (30) coincide if the coefficient in front of & in E(&) is the
same in both cases. At first glance this may appear to be a paradoxical situation, since these two rods
possess different mode shapes and different elastic moduli. To explain this result, let us list the fundamental
frequencies of the associated uniform rods of the same length L:

Y El s E2
o= — —_ e _ 31
Wc-c LWIplv WC-F 2LHp27 ( )

where p, and E; are the material density and modulus of elasticity of the clamped—clamped rod, whereas p,
and E, are the material density and modulus of elasticity of the clamped—free rod, respectively. If the
material densities are equal p, = p, = ay, but E; = 4E, then the fundamental natural frequencies coincide.
This implies that two rods can share the same fundamental frequencies if their material characteristics
differ. As discussed above, when elastic moduli of C-C and C-F rods differ they may share the same natural
frequency. In the case of the inhomogeneous rods, considered above, the expressions for the elastic moduli
in Egs. (22) and (29) differ. Thus, the coincidence of frequencies should not be totally unexpected. Yet, let
us review the conditions that lead to the coincidence of the natural frequencies. We postulated the vibration
modes and looked for rods with polynomial variation of density and elastic modulus that possess the given
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mode shape. Such a search, remarkably, led to the same fundamental frequency of rods in two sets of
boundary conditions. It will be shown below that this interesting phenomenon repeats itself for rods with
nonconstant densities along the rod’s axis.

4. Inhomogeneous rods with linearly varying density

Consider rods whose material density is represented by the following function:

p(&) = ap + ar&. (32)
We are looking for a rod with cubic polynomial representing its modulus of elasticity variation
E(&) = by + bi& + by&* + b3&. (33)

Note that the highest order in the polynomial expression for E(¢) is three, whereas in p(&) it is unity.
This is due to the fact that two differentiations are involved in the first term of the differential equation (7).
Substitution of Egs. (32) and (33) into the governing equation, in view of the mode shape for the
clamped—clamped rod (10) results in the polynomial expression as the left-hand side of the equation. Since
it is valid for any &, we get the following set of equations:

by —2by =0,

—4by + 2by + apk = 0,

—6b2 + 3bz - aok + alk = O,

—8b3 — alk =0.

(34)

We have four equations for five unknowns: by, by, b,, b3 and k. We express unknowns in terms of b3, as
follows:
by = b3(5611 + 16a0)/24a1,
b] = —b3(5a1 + 16610)/12611, (35)
b2 = b3(—5a1 + 8610)/6611.

We arrive at the following result: if the material density is given in Eq. (31), and the elastic modulus
variation is

5 8a 5 8a 5 4a0) 3
EG=|—-(z+-— = - —z+— b 36
(&) [ <3+3m)+<3+3m>é < 3+3m)é+é 3 (36)
then the natural frequency of the clamped—clamped rod is given by the last expression in Eq. (34)
w2C—C = 78b3/01L2. (37)

For the clamped—free rod, expressions (32) and (33) should be utilized in conjunction with the mode shape
in Eq. (12), to be substituted into the differential equation (7). It is valid if the following conditions are met:
by —2by =0,

—2by + 2by + kay = 0,

—3by + 3b; — kay/2 + ka, =0,

—4b; — ka, /2 = 0.

(38)

With b; as parameter, solving for by, by, b, and k in terms of b3 we obtain
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(39)

Solution of the above equations leads to the coefficients by, by, b, and b;. The final expression for the
modulus of elasticity is

E(ﬁ)ZK—i §ZT>+< §+§a‘:>q+< §+4a°>é +é} (40)

Thus, the inhomogeneous clamped-free rod with linearly-varying material density and variable modulus of
elasticity in Eq. (40) has the fundamental natural frequency stemming from the last expression in Eq. (39):

% = —8bay/L*. (41)

5. Rod with general variation of material density (m > 2)

Now consider the general case, m > 2. We are looking for the following variations in the density and
elastic modulus variations:

= iai§i7
-

= b
i=0

For the clamped-clamped rod, we are looking for the rods that possess the mode shape given in Eq. (10).
Substitution into Eq. (5) yields

(42)

m+2 m+2 m+1 m+2
D (i Dby & =2 bi&i(i+1) = 2by + kY a1 & —kY a2 =0, (43)
i=0 i=1 i=1 i=2
bl - bO = 07 (44)

2b2 — 4b1 + ka() = 0,

(l'+1)b,'+1—2b,'(l.+1)+kai,1—kai,2:0 (2<l<m+1),
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—2(m+ 3)byy2 — ka,, = 0. (47)
We obtain

by =10,/2,
6()2 = (4b1 — 2b2)/L2610,

o i+ 1)(2b; — bis1) (48)
@ Lz(ai—l - ai—Z) ’

@ = =2(m + 3)b,n/La,y.
For the coefficients b;, we obtain

b() == [71/27
b1 = [2(200 + al)bz — 3a0b3]/4(a1 — (10)7

bi={li(a; — ai-> — 2a,-1) + a1 + 3a,_1 — 4a;5)b; 1y
+ (i +2)(ai2 — ai1)bipa}/[2(i + 1) (a; — ai )],

Busa[—(2m + 8)ay, + 2(m + 3)a,_1]

bm+1 =

As for the clamped—free rod, the result of substitution of Egs. (42) into Eq. (5) in conjunction with Eq. (12)
leads to
m+1 ) m+2 ) m+1 ) m+2 )
S (i Dbi& =Y bili+ D& —bg+ kY ara& — kY ai2& =0. (50)
i=0 =1 i=1 i—2
Since this equation must be valid for any &, we arrive at the following recurrent equations:
by — by =0,
2b2 — 2b1 + kao = 0,
(51)

(l+ l)bi+1 — bl(l+ 1) +ka,',1 — ka,-,g/Z = 07 (2<l<m + 1),
—(m+3)byr — ka,/2 =0.
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These equations result in
b() = bl,
(D2 = 2(b] — b())/Lza(),

2. (i+ 1) (b1 — bis1) (52)

T P, —aa)L)

w* = =2(m +3)b,12/L*a,.
Note that the expression for ? in Eq. (52) is the same as in Eq. (48). Compatibility of Eq. (52) yields
by = by,
by = [2(a; + ag)by — 3apbs]/(ap — 2ay),

1 .
b= (+ D) (2a —a ) {li(ai-1 — ai—s + 2a2)] + [Ba;_1 — 2a;2 + 2a,]bia (53)
+ i@y — 2a;1) + 2(ai-2 — 2a;-3)]bis2 },
m+ 3)a,_» — (m+4)a,,
P [( Jan— — ( ) ]bm+z.

an(m+2)
The final expression for the natural frequency squared is
@ = =2(m + 3)b,2/L*a,. (54)

In order for the natural frequency to be a positive quantity, it is necessary that a,, and b, ., have opposite
signs.

6. Discussion

It should be emphasized that all previous expressions of the natural frequency can be put in the form (54)
with proper choice of m. However, the expressions for b; are derivable separately, for m = 0, 1, 2. To the
best of the authors’ knowledge, most of the previous investigators considered nonuniform rods in which the
cross-section varied but the material properties remained constant. It can then be argued that one can
actually manufacture such a rod so that the problem being studied can have direct applications. The present
paper considers cases in which the cross-sectional area is constant and the modulus of elasticity and/or the
density of the material vary continuously with position. This raises the most important question about this
study: Is it addressing a problem of practical interest, or is this simply an academic exercise in finding
solutions to a differential equation? How does one make a rod with properties varying as prescribed in this
study? To answer these somewhat provocative questions, we first note that early studies in inverse problems
did not exclude variable material properties. For example, Krein (1952) considered a string with variable
material density. More recently, Ram and Elhay (1998) distinguished between the cases, where 4 and E are
constant, while p varies with £, or 4, E and p all vary with £. Important variables are, of course, the
products EA4 and pA4. As far as the manufacturing of the rods with given axial variation of E(&) and p(&) is
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concerned, even if such a procedure does not exist today, its development in the future cannot be a priori
excluded.

The coincidence of the fundamental natural frequencies of rods with different boundary conditions may
appear to be a surprising fact, at the first glance. We have addressed this question above, albeit briefly. It is
remarkable that there exist structures that have the same complete spectrum. For example, Gottlieb and
McManus (1998) illustrated how two different polygonal membranes may have the same entire spectrum,
thus forming the so called isospectral structures. The reader may also consult the work by Gottlieb (1989),
Gladwell and Morassi (1995), Chapman (1995), and Sridhar and Kudrolli (1994) who experimentally
verified the isospectral property of membranes of different shapes.

It is noteworthy to remark on the similarity and difference of the present study with the general topic of
inverse problems, covered, for example, in the definitive monographs by Gladwell (1986) and Tarantolla
(1987). As Tarantolla (1987) writes, “‘to solve the forward problem is to predict the values of the observable
parameters, given arbitrary values of the model parameters. To solve the inverse problem is to infer the
values of the model parameters from the given observed values of the observable parameters™ (italics by
Tarantolla). In vibration context, the inverse problem consists in reconstructing the structure by its ob-
servable vibration spectrum. The reconstruction of the continuous variations in axial rigidity and the
material density of a longitudinally vibrating rod was studied apparently independently by Ram (1994) and
Wang and Wang (1994). In particular, Ram (1994) proved that the density and axial rigidity functions are
uniquely determined by two natural frequencies, their corresponding mode shapes, and the total mass of
the rod, when specially derived necessary and sufficient conditions are met for the construction of the
physically realizable rod, i.e. with positive parameters. Wang and Wang (1994) demonstrated that for the
rod’s reconstruction one needs the knowledge of two positive square frequencies, two associated mode
functions with piece-wise continuous second-order derivatives, satisfying some necessary conditions. The
objective of the present work is different from those of Ram (1994) or Wang and Wang (1994) (see also
Gladwell and Gbadeyan, 1985 and Ueda, S., 1988). Here, we are looking for closed-form solutions for
natural frequencies with specified fundamental vibration mode alone. In these circumstances, we uncovered
an infinite number of closed-form solutions, corresponding to the degree of variation in the mass density,
with m=0,1,2,...

In Ram’s terminology, “in the classical inverse problem, it is assumed that the cross-sectional area of the
rod is variable, while Young’s modulus of elasticity and the rod density are constants.”” Studies by Ram
(1994) and Wang and Wang (1994) allow the cross-sectional area, the modulus of elasticity and the material
density to vary along the rod’s axial coordinate. The present work is devoted to rods with the cross-sec-
tional area as a constant. Even with this seeming restriction, an infinite number of rods are uncovered that
possess a given polynomial mode shape. Once technology exists that allows construction of inhomogeneous
rods with polynomially varying modulus of elasticity, it is an easy task to demand the rod to have any
preselected fundamental natural frequency. Indeed, as Eq. (53) indicates the fundamental frequency de-
pends solely upon a,, and b,,,,. If a technology allows for manufacturing rods with arbitrary a,, and b,,,»,
one can get any desirable fundamental natural frequency. This leads both to an avoiding resonance con-
dition for forced deterministic vibration, and the first frequency to lie outside the range of excitation of a
rod under cutoff white noise with two cutoff frequencies w¢; and wc; in the random vibration environment
(Elishakoff, 1999). If the fundamental frequency ; in less than wc, the response level can be significantly
reduced. Thus, a new passive vibration control mechanism may be obtained.
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